
Welcome to the Chesapeake Data Explorer!

This is your gateway into data collected by a Chesapeake Basin-wide network of volunteer and non-traditional water quality monitors. Use the Map tab to invite database or to view Water Quality or Benthic Macroinvertebrate data on the map. Use the Query tab for more complex interactions and access to data do

Database Statistics

The summary statics below provide an overview of the current scope of the Data Explorer.

Volunteer-Friendly Techniques for Integrating Diverse Data into an Open Access Database

Helen Schlimm

Alliance for Aquatic Resource Monitoring (ALLARM)

Dickinson College

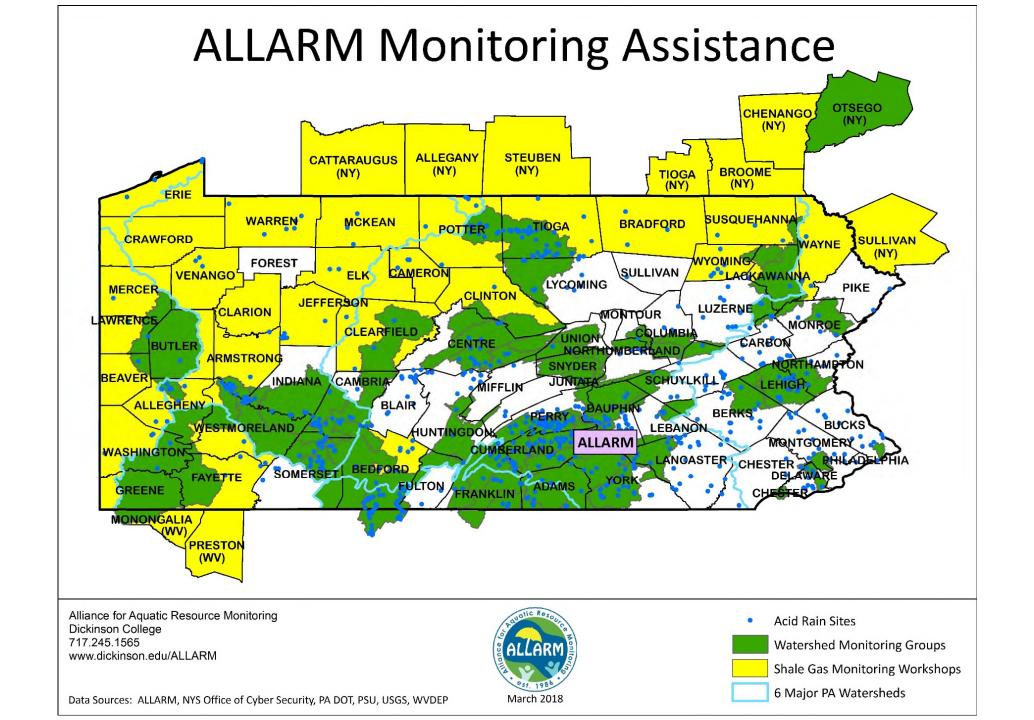
March 26, 2019

National Monitoring Conference, Denver CO

Outline

- ALLARM Overview
- Chesapeake Monitoring Cooperative Introduction
- Chesapeake Data Explorer
 - Data input
 - Data output & visualization
- Tools for volunteers
- Lessons learned

Who is ALLARM?


- Program of Dickinson College, Carlisle PA
- Founded in 1986
- 12-16 student Watershed Coordinators
- 4 full-time staff
- 45% supported by the college, 55% funded by federal, state, family foundation grants

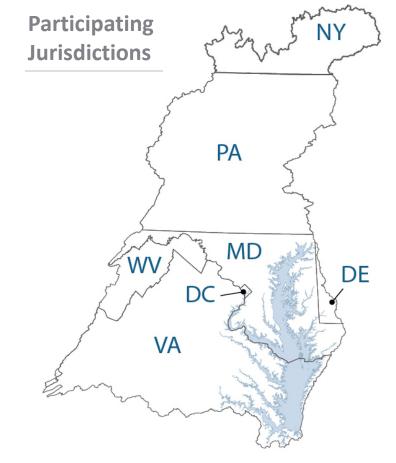
Dickinson

Mission: Empower communities with scientific tools to understand the health of their streams and participate in local decision making.

Chesapeake Monitoring Cooperative

A partnership that aims to provide technical, logistical, and outreach support for the integration of volunteer-based and nontraditional water quality and benthic macroinvertebrate monitoring data into the Chesapeake Bay Program (CBP) partnership.

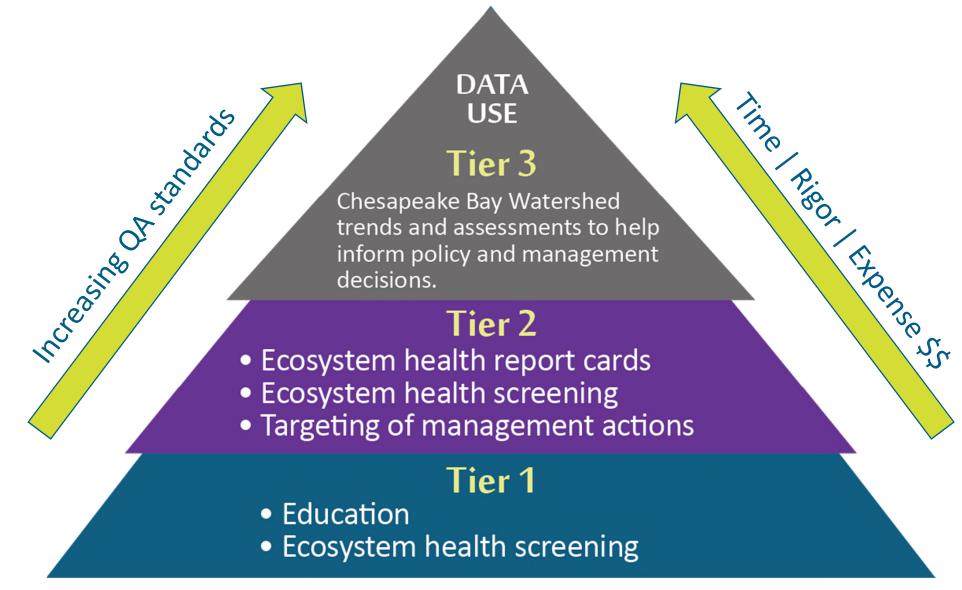
Cooperative Agreement



CMC development team partners & service providers

USEPA Grant #CB96334901

Data Integration Process


- Develop central repository for watershed-wide data input
- Coordinate with Bay Program- integrated monitoring system
- Current data?
 - Review monitoring program
 - Study design/QAPP
 - Review data/metadata
 - Feedback & integration
- New program?
 - Study design
 - Monitoring trainings
 - Data management
 - Data integration

Tiered Framework

Rubric for Assessing Data

1 2	Tier Assess	ment of Current Non-	Tidal Monitoring (Groups	
3	Group Name:				
4	Contact Name:		Contact Email:		
5	Contact Phone:		State:		
6		Programmatic		Notes or Comments	CDE Code
7		Yes	Preferred, not		
8	Written Study Design?	No	required		
9		CMC	Tier I or II		
10	Program Methods	Non-CMC	Compare to CMC		
11	Manual	No	Do not include		
12		CMC	Tier I or II		
13	Program QAPP?	Non-CMC	Compare to CMC		
14		No	All data provisional		
15	Documented Site	Yes	Tier I or II		
16	locations w/	No Do not include			
17		Sampling Location			
18		Boat mid channel	Tier II		
19	Compliant proting	Wade in mid channel	Tier II		
20	Sampling Location	Bridge/Dock mid channel	Tier II		
21		Shore line	Tier I		
22		QA/QC			
23		Yes	Tier II		
24	Field replicates (10%)	No (10%)	Tier I		
25	Lab Duplicate	Yes	Tier II		
26	Sampling (10%)	No	Tier I		
27	Lab Field Blanks /109/1	Yes	Tier II		
28	Lab Field Blanks (10%)	No Tier I			
29		Field Parameters			
30		Titration Kit	Tier II		
31	Alkalinitu	Hanna Digital Checker			
32	Alkalinity	Hanna Digital Checker Standardized	Tier II		
	∢ → Tidal	Non-Tidal +			

Tier P2 **P3**

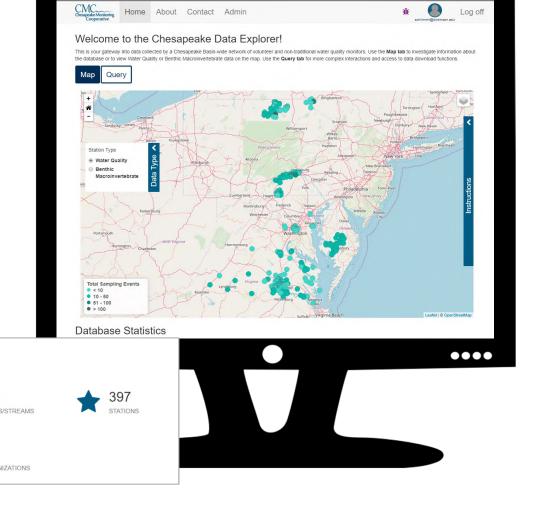
Metadata is key!

Monitoring Mantras

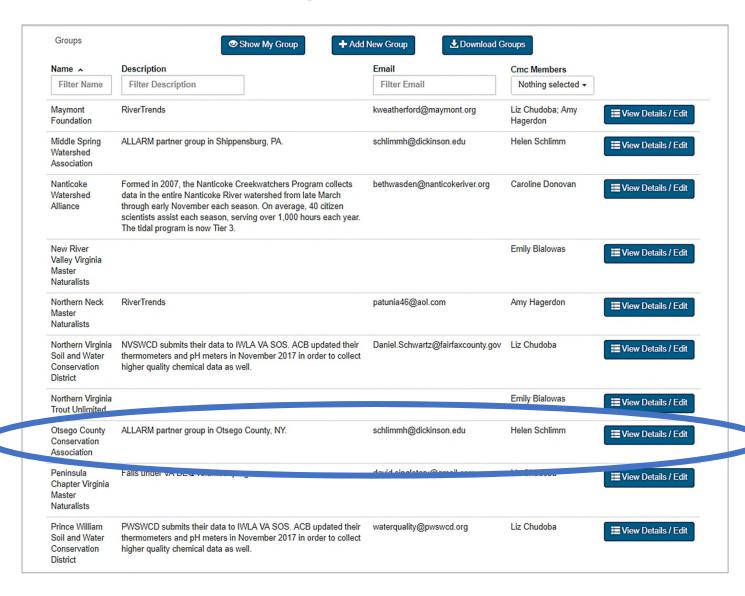
- All data of known quality have use
- Data must match quality with intended use

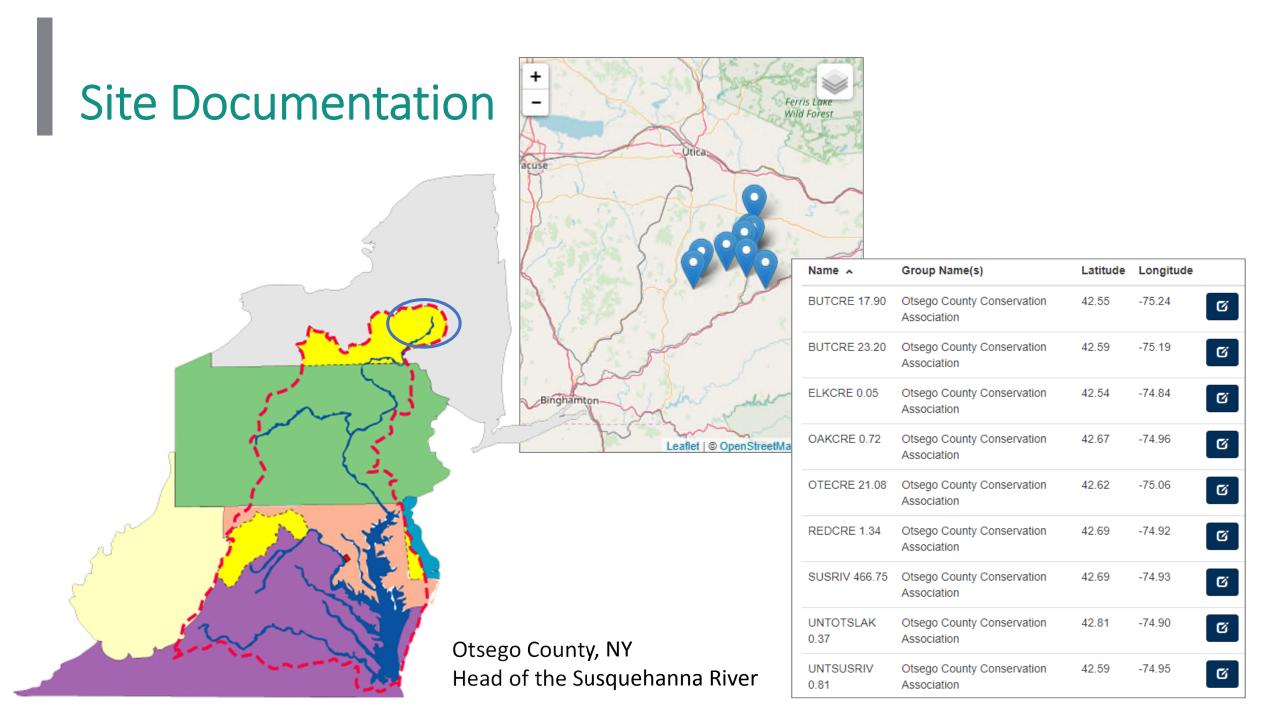
Developing a Database

- Capture volunteer/group info
- Record site locations
- Data input
- Data output and visualization


Database Statistics

332


The summary statics below provide an overview of the current scope of the Data Explorer


MACROINVERTERRATE

Metadata management

Group/Volunteer Management

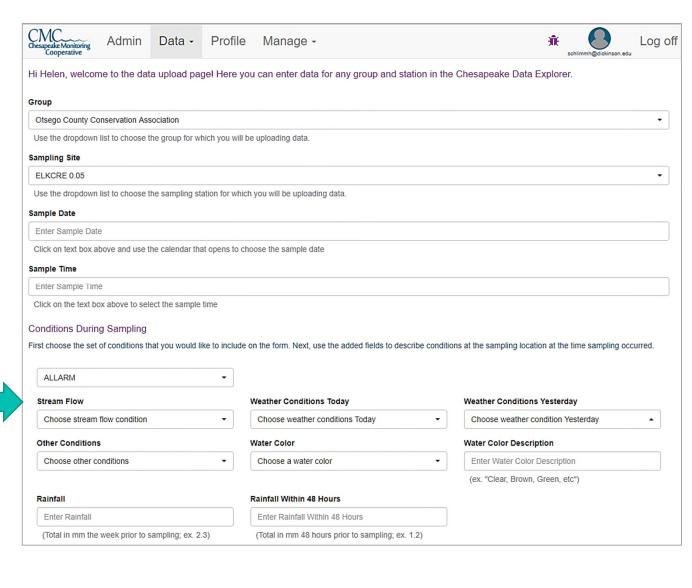
Methods Documentation

Cooperative	Admin Dat	a - Profile	Manage +		A H	Log schlimmh@dickinson.edu
Parameters				+ Add New Parameter	L Down	load Parameters
Name A	Code	Units	Equipme	ent	Tier	
Nitrogen -	Filter Code	Filter Units	Filter E	Equipment	Filer Tier	•
Ammonia- nitrogen	NH4N.1	mg/L	Specific t	to individual lab	2	₩ View Details / Edit
Nitrate-nitrogen	NO3N.3 mg/L		Zinc redu	uction colorimetric kit (ex. LaMotte 3354)	1	₩ View Details / Edit
Nitrate-nitrogen	NO3N.4 mg/L		Spectrop	hotometer; Colorimeter; Specific to individual	ab 2	■ View Details / Edit
Nitrate-nitrogen	NO3N.1	mg/L		n reduction colorimetric kit (ex. Hach NI-14 ; LaMotte 3110)	1	I View Details / Edit
Nitrate-nitrogen	NO3N.5	mg/L		n reduction colorimetric kit (ex. Hach NI-14 ; LaMotte 3110)	p1	₩ View Details / Edit
Nitrate-nitrogen	NO3N.6	mg/L	Spectrop	hotometer; Colorimeter; Specific to individual I	o p2	■ View Details / Edit
Nitrate-nitrogen	NO3N.7	mg/L	Colorime	eter (ex. Hach)	1	■ View Details / Edit

Equipment	
Cadmium reduction colorimetric kit (ex. Hach NI-14 1416100; LaMotte 3	110)
Precision	
0.01 mg/L (0 - 1 mg/L); 0.1 mg/L (1 - 10 mg/L)	
Accuracy	
Enter Accuracy	
Range	
0 - 1 mg/L; 1 - 10 mg/L	
Quality Control Criteria	
<0 mg/L; >10 mg/L	
nspection Frequency	
Before each use	
nspection Type	
Glassware is clean and intact; reagents have not expired	
Calibration Frequency	
N/A	•
Standard Or Calibration Instrument Used	
N/A	
Tier II Additional Requirements	
Enter Tier II Additional Requirements	
Holding Time	
48 hours	
Sample Preservation	
Cool; <= deg C	

Data Input

OTSEGO COUNTY CONSERVATION ASSOCIATION FIELD DATA SHEET


☑	Equipment Prep
	Equipment gathered, inspected, and ready to use
	LaMotte Tracer PockeTester calibrated with 84 & 1,413 μS/cm calibration solution

2. Record the sampling and site information in the boxes below:

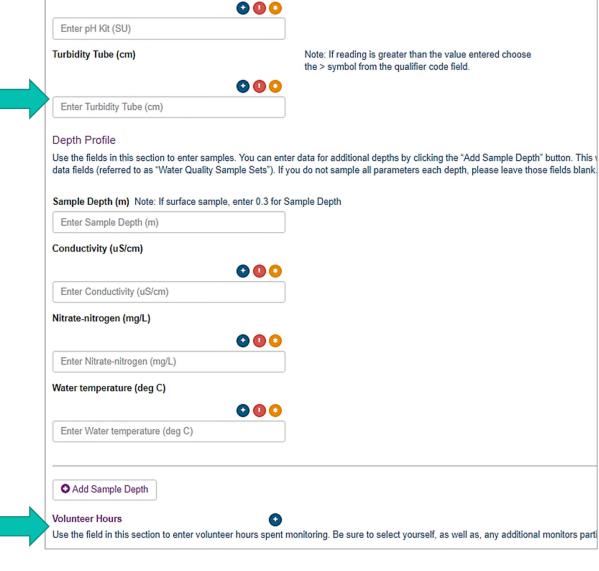
Sampling Information	Site Information				
Monitor Name	Stream Name				
Sample Collection Date	Site ID				
Sample Collection Time					

3. Record general observations in the boxes below:

3. Record general observations in the boxes	pelow:					
Air Temperature (°C)						
Rainfall Today (mm)						
Rainfall Within 48 Hours (mm)						
Stream Flow (circle one)	Negligible Lo		Normal		High	
Water Color (circle one)	Normal Abnormal					
Water Color Description (circle one)	Clear	Brown		Gr	reen	
Weather Conditions Today (circle one)	Sun Partial Cloud	Overcast	Fog	Drizzle	Rain	Snow
Weather Conditions Yesterday (circle one)	Sun Partial Cloud	Overcast	Fog	Drizzle	Rain	Snow
Observations/Notes:						
•						

Data Input

4. Record at-stream and post-stream measurements in the boxes below:


Parameter	Order	Acceptable Range	Rep #1	Rep #2	Rep #3	Average
Water	At-	10500				
Temperature	Stream	± 0.5 °C				
Conductivity	At-	1.406/				
	Stream	± 10 μS/cm				
Water Clarity	At-	± 10 cm				
	Stream	± 10 cm				
Dissolved	At- and					
Oxygen	Post-	± 0.6 mg/L				
	Stream					
pH	Post-	14-111				
	Stream	±1 pH unit				
Nitrate	Post-	0 - 2 mg/L = ± 1 mg/L				
	Stream	2 – 10 mg/L = ± 2 mg/L				
		10 – 15 mg/L = ± 5 mg/L				
Orthophosphate	Post-	1004/				
	Stream	± 0.04 mg/L				

5. Did you test your sample within the maximum holding time for the four non-field parameters?

Parameter	Maximum Holding Time	☑ YES	⊠no
Dissolved Oxygen	8 hours (B)		
pH	24 hours		
Nitrate	48 hours		
Orthophosphate	48 hours		

hours

- 6. Record the amount of time you spent monitoring, including:
 - a. Preparing your monitoring equipment
 - b. Driving to/from your site
 - c. Collecting a water sample and measuring all 7 parameters
 - d. Cleaning your monitoring equipment
 - Entering your results into the CMC Data Explorer (when available)

1 1 1 1

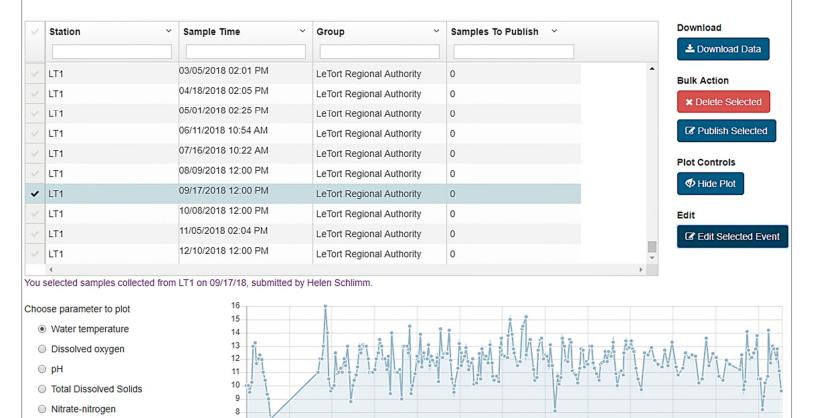
Orthophosphate (mg/L)

pH Kit (SU)

Enter Orthophosphate (mg/L)

Bulk Upload

LeTort Regional Authority
▼


OrthophosphateWater ClarityConductivity

Use the dropdown list to choose the group for which you will be editing data.

LT1 ▼

Use the dropdown list to choose the sampling station for which you will be editing data.

4	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
1	Source	Station	Date	Time	SampleDe	Paramete	Paramete	Value	Qualifier	Problem	Comment	S	
2	AFCB	VIMS.GI	1/1/2010	16:15:00	0.25	WaterQua	WT.1	3.3					
3	AFCB	VIMS.GI	1/1/2010	16:15:00	0.25	WaterQua	TU.1	1.27					
4	AFCB	VIMS.GPP	1/1/2010	16:15:00	0.25	WaterQua	TP.1	0.687					
5	AFCB	VIMS.GI	1/1/2010	16:15:00	0.25	WaterQua	TP.1	0.1	<		below det	ection lim	it
6	AFCB	VIMS.GI	1/1/2010	16:15:00	0.25	WaterQua	TP.1			RR	sample br	oke on wa	y to lab
7	AFCB	VIMS.GI	1/1/2010	16:15:00		Monitor	VIMS.Johr	12					
8	AFCB	VIMS.GI	1/1/2010	16:15:00		Condition	WC	CALM					
9	AFCB	VIMS.GI	1/1/2010	16:15:00		Condition	SF	NORMAL					

Data Formatting

- Macro program in Excel
 - Converts variable data formats to template for bulk upload
 - Reduces time and effort
- Standardize monitoring methods and resources

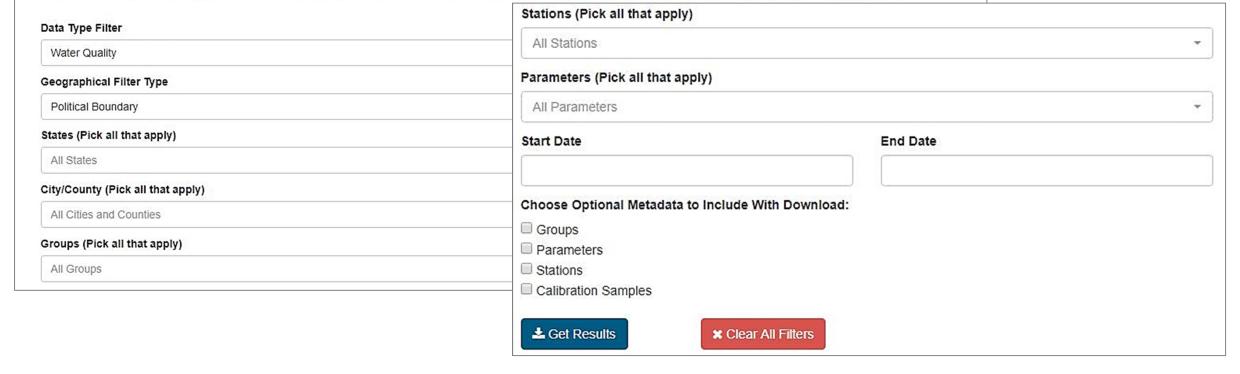
Instructions:

- 1) Put data within the data worksheet
- 2) Put Chesapeake Data Explorer site codes within the sites worksheet; be sure the spelling is correct!
- 3) Put Chesapeake Data Explorer water quality parameter codes within the codes worksheet.
- Make sure the header of the data worksheet matches the parameter names in the codes worksheet. A spellin data not printing.

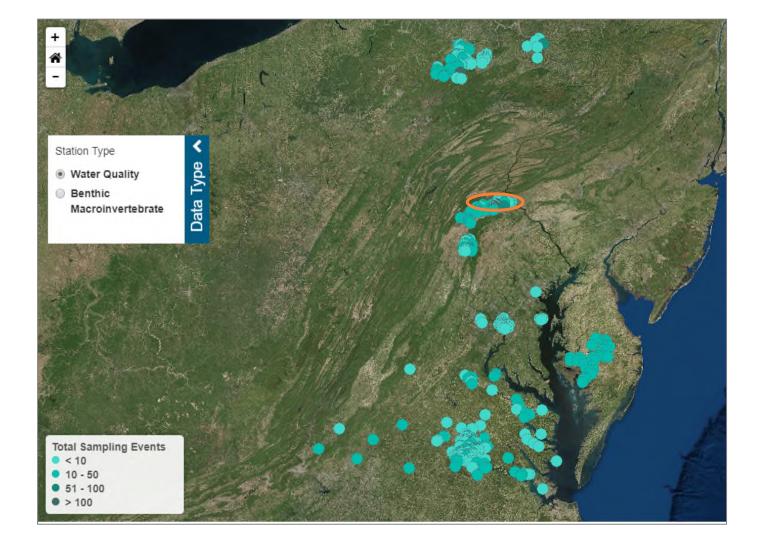
Important notes:

- Be sure there are no rows that do not have a site name within the data worksheet!
- Be sure there are no empty cells within the header of each worksheet. The first empty cell should signal the eneach worksheet is in green)

Convert Data

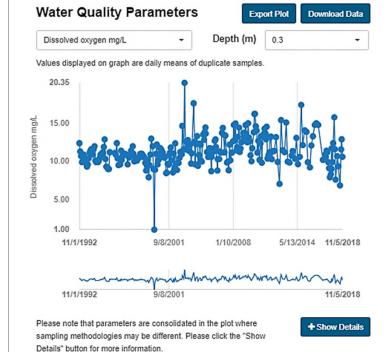

Data Output

Welcome to the Chesapeake Data Explorer!


This is your gateway into data collected by a Chesapeake Basin-wide network of volunteer and non-traditional water quality monitors. Use the **Map tab** to investigate information about the database or to view Water Quality or Benthic Macroinvertebrate data on the map. Use the **Query tab** for more complex interactions and access to data download functions.

On this page you can download data from the CMC Data Explorer database. Use the form below to build a query that will identify the specific data you want to download. As you step through the form, each selection will narrow down the possible options in subsequent steps. For example, if you choose James River from the "Watershed" selection box, then the subsequent selection boxes (sub-watershed, groups, stations, etc) will only show options available in the James River watershed. At the bottom of the form, use the check boxes to select the associated metadata you would like to include with your download. When you are finished making your selection, click **Get Results** to download your .csv file(s) of data.

Visualization


LT6 - LeTort Spring Run 4.05

Monitored by: LeTort Regional Authority

Click a Quick Plots option to choose commonly viewed water quality data types. Click Export Plot to download the graph. Click Download Data to be taken to a data query page for this station.

Quick Plots

Dissolved oxygen mg/L | Water temperature deg C |

Station Profile

Description: LeTort Site 6

Location: 40.20792, -77.18104

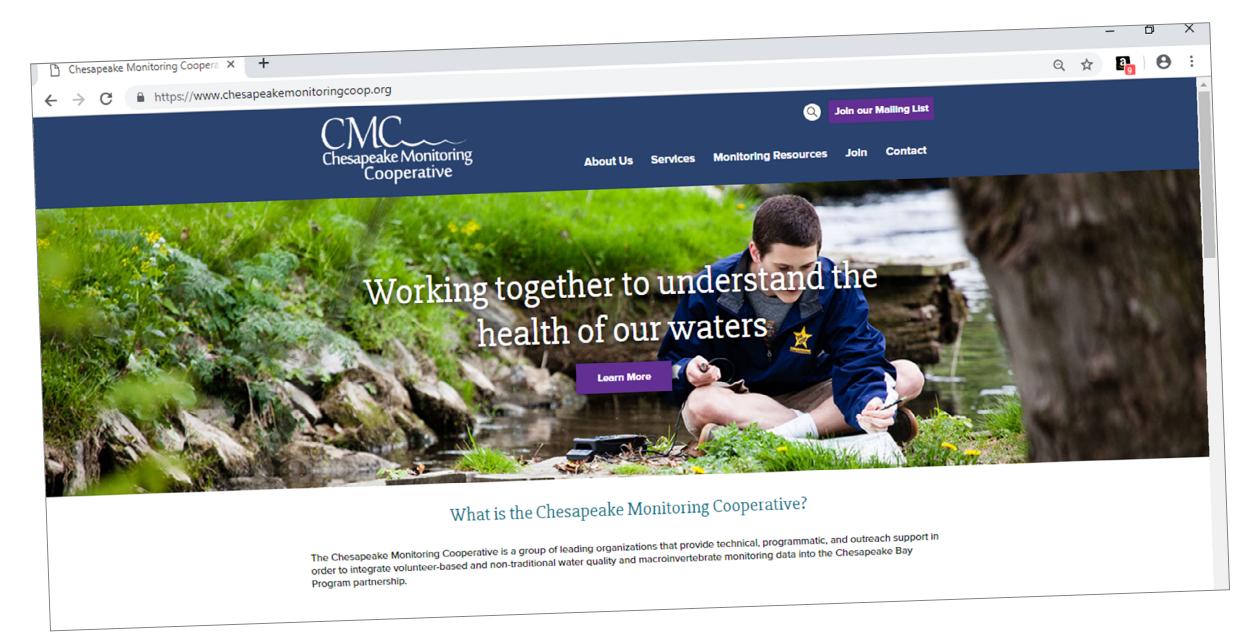
First Sampled: November 1, 1992

Most Recent Sample: November 5,

2018

Tools for Volunteers

- User manual
- Training video series
- Data formatting program
- Website
- Published documents
- Multi-partner collaborations
- Group coordinators
- One-on-one communication
- Follow-up meetings


Quick Links:

Upload Data

Submit Station

Contact CMC Service Provider

Lessons Learned

- Variable data
- Need for flexibility- rigid structures challenging
- Tricky balance of technique, standard methods, QA practices
- Balance of volunteer efforts and resources
- Need for more data management tools
- Collaboration is key!
- Rewarding success stories

Questions?

Helen Schlimm

Alliance for Aquatic Resource Monitoring (ALLARM)
Dickinson College
schlimmh@dickinson.edu